
1

DevSecOps can reduce 80% of production application security
vulnerabilities and related incidents

Operationalizing
DevSecOps:
 How to Overcome the Challenges and Get Started

2

Table of Contents:
1. Introduction.. 3

2. What is DevSecOps?... 5

3. Challenges in Implementing DevSecOps... 6

4. Application Security Testing Workflow .. 8

5. Security Operation and Monitoring Workflow... 13

6. CI/CD Pipeline Overview.. 15

7. Security Policies and Security Gates.. 17

8. DevSecOps Journey... 19

9. DevSecOps Maturity Model.. 22

10.	 Benefits	of	DevSecOps..	24

3

Introduction
DevOps standardizes and automates continuous code integration, delivery, and deployment workflow
orchestration. As we know, consistency in development, test and deployment are key to avoid mishaps and
failures. DevOps is all about improving collaboration between development, release engineering, quality
assurance, and operations teams. DevOps helps improve collaboration and communication among teams and
deliver	applications	at	a	faster	pace	without	sacrificing	quality.	Microservice	architecture	or	modular	application	
architecture is also one of the key factors for the successful implementation of fast-paced DevOps, where each
component can be developed, revised, and deployed on its own, and any issues within an individual project have
only a minor impact on the entire software project. All the modular components or microservices are integrated
using APIs.

1. Introduction

Dev Ops

Sec

4

Traditionally, a security engineering team handles application security testing, but in many enterprises, security
is an afterthought. Security testing starts when an application is ready to go to production and majority of the
issues	found	cannot	be	fixed	before	it	is	deployed.	The	goal	of	DevSecOps	is	to	ensure	that	you’ve	identified	
majority of application security vulnerabilities before deploying code to production, without compromising the
speed or quality.

In this paper, we will discuss in detail the challenges involved in operationalizing DevSecOps, integrating
application security testing into DevSecOps, and how to systematically approach DevSecOps maturity. With
infrastructure as a code and policy as a code, the scope of security code is no longer limited to application code.
DevSecOps is a slow process and it requires good planning, CI automation with security test requirements, and
redefining	the	roles	of	developers,	security	engineers,	and	operations	engineers.	

To	ensure	consistent	use	of	DevSecOps,	it	is	important	to	define	or	enhance	enterprise	security	policies	and	
security	exception	waiver	policies,	as	we	know	many	applications	will	be	released	into	production	with	known	
security issues. Many factors contribute to these issues, including third-party libraries, ineffective mitigation,
vulnerabilities	highly	likely	to	be	exploited	vs.	vulnerabilities	inaccessibility	from	the	external	world,	and	in	some	
cases, a rush to meet urgent business needs.

This	paper	shares	what	we’ve	experienced	and	learned	while	deploying	DevSecOps	at	scale.	We	will	also	share	
best practices for security policies, security gates, effective tools, and a case study on effective implementation
and operationalizing of DevSecOps at scale.

5

DevSecOps	 is	 an	 extension	 of	 DevOps	 that	 leverages	 DevOps	 workflow	 automation	 and	 efficiencies	 for	
application security testing of every code release to production. DevSecOps brings consistency to security
testing and prioritizes it at the same level as functional testing.

The workflow automation and orchestration enables a culture of close collaboration and communication among
application security teams, development teams, operations teams, and network and infrastructure security
teams.

DevSecOps helps identify security vulnerabilities early in the development cycle not only for application security
but for infrastructure and network security as well, as validation tools are integrated with code deployment. The
security tools required for application security are different from those for network and infrastructure security.
DevSecOps is the most effective and economical way to reduce production security incidents.

While actual implementations will vary, DevOps generally includes four stages, each of which integrates security
tools and workflow. DevSecOps embeds security testing in each stage of DevOps:

What is DevSecOps?2. What is DevSecOps?

Plan Build Test Deploy

• Threat Model
• Security Requirements
• Security Training
• On boarding to Security Tools

• Static code analysis (SAST)
• Open source vuln scan
• Container vuln scans

• Dynamic AppSec Testing (DAST)
• Interactive AppSec Testing(IAST)

• Interactive AppSec
Testing(IAST)

6

DevSecOps	also	adds	security	controls	and	configuration	checks	during	deployment:

Challenges in Imp3. Challenges in Implementing DevSecOps
Adopting DevSecOps is a slow process. Organizations can easily spend one to two years reaching full maturity,
depending	on	their	enterprise’s	 focus,	 funding,	and	strategic	vision.	One	of	 the	major	challenges	 involved	 in	
operationalizing DevSecOps is matching the speed with which applications are developed and released using
agile with DevOps. In some cases, applications are released on a daily basis in majority of other cases agile
scrums typically lasting two weeks for a code release.

One of the key challenges in successfully adopting DevSecOps is to identify the high-risk changes versus
low-risk changes on a continuous and near real-time basis. These might be development changes—i.e., code
related—or operational changes—i.e., incidents or known network and infrastructure security issues.

Beyond	that,	here	are	five	common -	challenges	organizations	experience	when	adopting	DevOps:	

1. Traditional security testing tools and processes are designed for the waterfall model. Adopting DevSecOps
requires	reviewing	and	updating	your	existing	application	security	policies	and	security	requirements.	You	
should	consider	potential	exceptions	and	scenarios	where	the	applications	dev	team	has	late	discovery	due	
to	a	security	tool	upgrade	or	late	code	change,	but	delaying	the	release	is	not	an	option.	It	is	common	to	find	
previously unreported issues for the same code base after a security tools upgrade.

7

2. Most security engineers are trained for manual security testing. Application security engineers and secure
software development life cycle (SSDLC) engineers usually come with a penetration testing background,
network security background, or software testing/quality assurance (QA) background. They typically have
knowledge	of	secure	coding	practices,	OWASP,	or	SAN25	application	security	vulnerabilities	and	ways	to	fix	
them.	But	they	don’t	usually	have	software	development	knowledge.	It	is	challenging	for	such	security	teams	
to adopt to DevSecOps, which relies on automated security testing and shifts much of the responsibility for
secure coding and testing to the development and quality assurance teams. Application security engineers
are still needed, however, as they need to make sure false positive rates remain low, provide guidance to
developers	 on	 fixing	 security	 issues,	 and	offer	 continuous	 training	on	 application	 security	 testing,	 threat	
modeling, and secure coding practices.

3. Developers and quality assurance engineers are not trained for secure coding and security testing. The
success of DevSecOps relies on developers adopting secure coding practices; using security testing tools,
such	as	static	code	analysis,	as	early	 in	 the	process	as	possible;	and	continuously	 testing	and	fixing	the	
security issues on a daily basis. Interactive Application Security Testing (IAST) relies on QA test coverage. If
the QA test coverage is low, then security testing will be incomplete. This is one of the major challenges with
IAST.

4. Traditional security tools lack automation support. Adopting DevSecOps requires careful evaluation of
security tools to ensure they support automation and integration with Jenkins, Bitbucket, and Jira. Allow
your	team	to	define	rules	that	mark	particular	types	of	defects	to	suppress	and	no	longer	report	if	marked	as	
false	positives.	Consider	the	programming	languages	you’re	using,	and	look	for	tools	that	keep	false	positive	
rates	low,	and	allow	you	to	easily	configure	rules	to	detect	and	suppress	them.	Tools	required	for	application	
security	testing	are	distinct	from	the	tools	required	for	security	configuration	and	monitoring	checks.

5. Absence of security gates, security testing enforcement, and exceptions. This is one of the common
sources	of	DevSecOps	mishaps	and	failures,	as	there’s	no	clear	definition	or	automation	for	which	release	
has to go through which type of application security testing. This creates ambiguity and confusion with the
development and operations teams. The security policy should also consider sensitive applications in the
scope of PCI or HIPPA, as some of them may require manual review and approval for critical releases.

8

Application security testing is usually divided into the following areas:

• Security architecture review is one of the critical steps to understanding threat vectors, and identifying
design and implementation issues as early in the process as possible.
Security architecture review is usually done for new applications or a major change in key design areas, such
as Identity Access Management (IAM), data protection and privacy, API security, and connectivity and data
sharing	with	external	partners.	The	security	threats	identified	during	security	architecture	review	are	converted	
to security requirements to prevent those threats. The implementation of these security requirements must
be	verified	during	source	code	review	as	part	of	SAST.

• Static Application Security Testing (SAST) involves source code security scans using automated tools.
Source code security testing is also referred to as static code analysis. Integrating SAST in DevSecOps
requires good planning and training to developers on project naming convention, identifying release scans,
ways to mark false positive or when requires support from security engineers. SAST can generate hundreds
to	thousands	of	findings,	depending	on	the	size	of	applications.	Hence	baseline	for	SAST	is	an	 important	
step to be performed before integrating with DevSecOps automation, to ensure smooth onboarding to the
DevSecOps process.

Source code design and implementation review is important to identifying critical parts of the code because
SAST will not be able to identify the following security vulnerabilities:
- Any issues related Identity Access Management for authentication and authorization, Password change
and Password reset flow etc.
- Data encryption/decryption algorithms and key security implementation for data in use and data protection
in transit
- API authentication and authorization
- Data masking and protection at rest

Application Secur4. Application Security Testing Workflow

9

Project baselining to SAST
When	you	introduce	DevSecOps	for	existing	applications,	you	need	source	code	baselining.	This	process	scans	
all of the application source code to identify false positives, then updates the rules to suppress the false positives
if	there	are	input	sanitizers	outside	of	the	source	code—e.g.,	a	third-party	library	that	needs	to	be	configured.	
Based on the lines of code and number of modules involved, this could be time-consuming and require careful
review and triaging of all the security issues by security engineers in collaboration with developers.

Integrating SAST with Continuous Integration (CI) and scaling to a large number of applications is challenging,
especially when those applications have not gone through SAST using the same tool.

Threat
Model

Security
Requirements

Source Code
Design Review

Code Scan
SAST Baseline

Triage & SAST
Rules Update

Release A
Source Code

Release A+1
Source Code

Release A+2
Source Code

CI SAST
Integration

CI SAST
Integration

CI SAST
Integration

Secur ity Issues
Fixed

Design
Stage

SAST
Baseline

SAST
DevSecOps

10

• Dynamic Application Security Testing (DAST) / Interactive Application Security Testing (IAST) is used
during the QA or testing phase. The integration with DevSecOps depends on the type of application and type
of tools.

o Traditional DAST	is	configured	as	a	reverse	proxy	during	QA	testing.	DAST	captures	all	QA	test	request	and	
response calls and then generates new tests by modifying request payloads for security testing. Some of
the drawbacks are:

-		Configuration	and	setup	require	custom	automation,	aren’t	easy	for	developers	to	set	up,	and	may	require	
a	security	engineer	to	set	up	and	configure	
- High false-positive rate
- Take much longer to run

o Modern DAST has evolved from web security scanners and provides good coverage for OWASP type of
security and can also perform API security testing. Some of the advantages:
-	 Easy	to	configure	and	integrate	with	CI	tools
- Low false-positive rate and easy to use

Drawbacks:
- Only covers the endpoints discovered by the web crawler

HTTP
1. QA Test Request

2. QA Test Response

1. QA Test Request

2. QA Test Response

3. DAST Request

4. DAST Response

Traditional
DAST

(as	a	Proxy)

11

o IAST has been evolving for the last couple years and provides good security coverage, but it heavily relies
on QA tests and code coverage. IAST requires integration with web applications and you have to install an
agent with your web server.
Some of the advantages:
-	 It	can	find	security	vulnerabilities	based	on	code	executed	during	QA	tests;	coverage	is	based	on	QA	
test code coverage
- Able to identify security vulnerabilities to the outside of OWASP, such as vulnerabilities with 3rd party
libraries,	clear	text	credentials	&	keys	etc.
- Easy to set up and use and integrate with CI tools

HTTP

1. QA Test Request

2. QA Test Response

Security Vulnerabilities Reported

IAST Server

HTTP

1. Authenticated Web Crawling

2. DAST Request

3. DAST Response

Modern
DAST

12

• Open source analysis, also known as binary composition analysis, is required to identify open source or third-
party library vulnerabilities. There are several challenges in resolving open source vulnerabilities, and in many
cases,	fixes	are	not	available	or	there	are	no	guidelines	on	how	to	fix	the	issues.

o		It’s	possible	that	your	application	is	not	invoking	any	of	the	vulnerable	methods	in	runtime	
o The most challenging issues are when you have open source vulnerabilities with transitive dependencies.
For	example:	

- Project ACME imported a third-party Library A – One possibility that Library A has vulnerabilities and
which is straight forward and easy to identify.

- Another possibility : Library A imports third-party Library B, and Library B has vulnerabilities, it is called
transitive	dependencies	order	1,	and	difficult	to	identify	exploitability	factor

- Another possibility : Library B imports third-party Library C and Library C has vulnerabilities, it is called
transitive dependencies order 2 and so on

Open	source	vulnerabilities	are	difficult	and	time	consuming	to	triage.	Currently,	there	are	no	good	tools	
that can help track open source vulnerabilities with source code to identify if any of the known vulnerable
libraries is invoked in runtime.

Practically, it is best to remediate all critical and high severity rated open source vulnerabilities before the
release instead of triaging each one of them.

13

Security Operation5. Security Operation and Monitoring Workflow
According to Gartner, organizations spend around 95% of their InfoSec budget on building perimeter defenses
and security operations, and invest only 5% in application security. DevSecOps is going to have a major impact on
the InfoSec budget. With a well-proven “shift left” strategy, a mature DevSecOps implementation can drive down
the number of security incidents drastically. DevSecOps helps complete the feedback loop from production to
development using automated tools and helps correlate security vulnerabilities and incident-related data from
the production environment to release time.

Integrating	DevSecOps	with	security	operations	and	monitoring	tools	is	one	of	the	key	benefits	and	an	area	of	
focus for many startups.

• DevSecOps integration with security operations: The goal of DevSecOps is to ensure that application
production	environment	security	is	verified	during	the	deployment	time.	The	most	useful	security	controls	
include:

14

Example of Security Controls

1 All security agents are functional in the production server

2 Web	application	firewall	(WAF)	configuration	matches	the	expectation	for	this	application	

3 CDN	and	DDoS	protection	meet	expectations	for	this	application		

4 Intrusion	detection	and	prevention	technology	configuration	meets	expectations	

5 SIEM centralized logging meets the OS and application-level logging requirements

6 User entity behavior and authentication solution is integrated with the application requirements

7 Any	incoming	attachments	or	files	are	scanned	for	malware	before	processing	and	storing	

8 Security	configurations	for	web	applications,	IAM,	and	access	controls	are	checked

9 Verify	firewall	configuration	and	open	ports	for	this	application	

10 Verify data protection controls for in transit (TLS), in use (HSMs, and key protection security), and at rest

11 Verify all critical and high vulnerabilities detected by network and infrastructure security scanning tools are resolved

12 There are no known security incident issues open

• DevSecOps integration with security monitoring: Security monitoring tools play a critical role in discovering
security incidents. Many of these tools generate millions of alerts each day, including a lot of false positives.
Many	of	these	alerts	indicate	issues,	but	in	the	absence	of	appropriate	security	analytics,	it	is	hard	to	find	any	
specific	threat	data	points	from	these	alerts.	The	objective	behind	security	alert	monitoring	is	to	identify	the	
alerts related to known issues in your application security or network and infrastructure environment.

The data from security alerts is checked against any known issues on an ongoing basis and any security
incidents or likely true positive threats should be checked during deployment time.

15

In this section we share the high-level architecture for Continuous Integration, Continuous Delivery, and
Continuous Deployment workflow integration.

Continuous Integration (CI): The CI kicks in with code check-in, which can trigger an automated build process.
The key is a smaller and regular code check-in, which could occur a few times every day, and performing build
and test for every incremental code check-in. Though this sounds simple, it requires careful automation from
multiple tools and based on different conditions. With every successful build, packaged code is passed to the
next	 stage	 from	binary	 security	 scans,	 automated	 infrastructure	 provisioning,	 code	 deployment,	 regression	
testing, and security testing.

You	can	 set	 up	 security	 testing	 tools	 using	 automated	 scripts,	 initiate	 the	 test	 configuration	 required	 for	 a	
specific	build,	and	continuously	monitor	the	progress	of	the	test.	Whether	pass	or	fail,	the	results	of	each	step	
must	be	communicated	to	the	next	step	and	back	to	the	CI/CD	dashboard	as	well.	

The following picture covers the CI/CD for applications without containers and applications with containers:

Example of Security Alerts to analyze

1 WAF alerts

2 IDS/IPS alerts

3 SIEM security alerts

4 OS security agent alerts, such as for integrity protection, software signature violations, and privilege access alerts

5 IAM access alerts

6 Firewall alerts

7 DB Access Alerts

8 RASP Alerts

9 Any other security tools alerts that could be correlated to help identify attack path

CI/CD Pipeline Ove 6. CI/CD Pipeline Overview

16

Source Code Application
Buid

Artifactory

Infrastructure
as a Code

Source Code
Security Scan(SAST)

Open Source Scan
/Binary Scan

Infra/ Policy
code Scans

DAST- Dynamic
Security Testing

Production

Non-Production

IAST Pen
Test

Policy as a
Code

CI/CD Architecture Overview

Source Code

Artifactory

Docker
Registry

DockerFile

Source Code
Security Scan(SAST)

Open Source Scan
/Binary Scan

Container
Security Scan

Infra/ Policy
code Scans

DAST- Dynamic
Security Testing

Production

IAST Pen
Test

Infrastructure
as a Code

Policy as a
Code

CI/CD Architecture Overview for Container

Non-Production

Application
Buid

Application
Buid

17

Security Policies 7. Security Policies and Security Gates
Enterprise	 security	 policies	 and	 release	 security	 gates	must	 be	 defined	 clearly	 to	 support	 enterprise	 needs	
for a fast-paced application release process. All code releases are not required to go through all types of
application security testing. The DevSecOps automation must be able to pick the required security testing
rules	automatically	based	on	the	release	type.	You	must	define	the	code	release	security	gates	and	enterprise	
security policies in collaboration with the development team and operations team, as both play a critical role in
DevSecOps success for the enterprise. The code release security gates must also provide the guidelines for the
exception	or	waiver.	

• DevSecOps-related enterprise security policies: The importance of security policy and governance are well
known. They help organizations reduce risk and improve control effectiveness, security, and compliance
through	an	integrated	and	unified	approach	across	the	organization.	

Here are examples of enterprise security policies around DevSecOps:

Proposed DevSecOps Security Policy Proposed Policy Options

1 Severity of security bugs not allowed to the in-release
branch

Critical, high, medium. It could also be based on vulnerabilities from a
specific	discovery	source.

2 Application Security Testing (AST) requirement criteria for
code release SAST, DAST, open source scan, container scans, pen test

3 Similar vulnerabilities from multiple sources Similar vulnerabilities from multiple sources have higher chances of
exploitability	

4 Issues related to past security incidents still present in this
code release

How to manage deployment if there are known security incidents
related to that application

5 Application	security	controls	–	WAF,	SIEM,	UEBA	firewall	
requirement

Preventive application security control requirements such as UEBA,
credential protection, document scanning, etc.

6 Already known network and infrastructure vulnerabilities
for this applications asset

How to manage if there are already known security issues in produc-
tion servers

7 Production	security	configuration	scans	for	the	OS	and	
web components Security	configurations	for	web	servers	and	OS	services	to	be	verified	

8 Verify all required OS security agents and check on in-
stalled images Verify	all	the	OS	security	agent’s	health	checks

9 Number of new issues allowed in production How many issues would be allowed to go in production for medium/
low vulnerabilities

18

• Release security gates: Release security gates are the most important aspect of security policy enforcement
in	 CI	 pipelines.	 One	 of	 the	 key	 requirements	 for	 these	 security	 gates’	 effectiveness	 is	 to	 have	 security	
tools	that	meet	the	low	false-positive	rate	and	are	easy	for	development	teams	to	use.	You	must	train	the	
development team to use the tools effectively and understand their roles in DevSecOps. Participation from
the development team is required for the success of DevSecOps.

Proposed Security Gates Example Security Testing Rules

1 SAST For all types of source code changes

2 DAST For all web applications

3 IAST IAST is available and only for web applications and when QA coverage is ~80%.
Otherwise	it’s	optional.	

4 Open Source Analysis (OSA) During build for all types of source code change

5 Container scan When container is used

6 Pen test For all internet-facing new applications, sometimes for major changes, and repeated
usually every 12 months.

7 Threat model This is usually a manual step and only required for new applications and in some
cases for major releases.

8 Production	security	configuration	check	 Production	security	configurations	to	be	verified	before	release;	define	rules	for	what	
needs	to	be	verified.

9 Production network and infrastructure
vulnerability check

Use data from the latest production server vulnerabilities scanned to ensure there
are no additional risks with the current release.

19

DevSecOps requires that DevOps is operational and a CI/CD pipeline is actively used for building, testing, and
deployment.

Plan: Every release must start with a plan to identify application release scope and code changes planned. This
helps create the security assessment checklist that you will follow throughout the release.
• Identify the application release scope and code changes planned
• Identify the release security gates early in the planning process
• Plan for required security training

The	following	is	an	example	of	an	application	release	security	assessment	checklist:
Release Security Assessment:

DevSecOps Journe8. DevSecOps Journey

Example of Release Security Assessment

1

This assessment is for one of the following:

1. New applications

2. Major release: This involves changes to user authentication code flow, role-based access
control	code,	data	protection	code,	privacy-related	external	file	processing	flow,	API	authentication	and	session	manage-
ment	flow,	new	external	APIs,	and	critical	and	high	severity	security	bug	fixes

3.		Minor	release:	Front-end	UI	changes,	back-end	changes,	functional	bug	fixes,	no	major	
change	in	the	code	flow,	and	medium-	and	low-severity	security	bug	fixes

2 Exposure	of	the	application:	Internet	(consumer	facing),	limited	partner	facing,	internal	employee	facing	

3 Data	classifications	Involved:	PAI,	PHR,	PII,	confidential	data	(business	sensitive,	source	code,	IP,	etc.)

4 Application name and application ID

5 Deployment environment: Public (AWS, Azure, GCP, Oracle, Salesforce), private

6 Type of Application: Web, mobile, data science, SaaS, third-party applications

7 Use of container and sidecar container security

8 Use of infrastructure and policy as a code

20

 The planning step helps identify appropriate security gates and security training for the development team if
this is a new application. It also helps them with the source code baseline review process for SAST.

• Develop (code, build, and test): This key point during the development phase is to ensure developers are
using SAST as early in the development as possible. This step is part of CI, which involves merging required
code branches based on automated rules that drive the rapid integration of iterative software development.
- IDE integrated code scans: Most of the SAST tools offer a plugin to be integrated with IDE such as Visual

Studio, Eclipse, and IntelliJ, which will perform continuous code scans or on-demand code scans while the
code is being written. This is ideal for resolving any coding issues during development.

- Daily build code scan: Daily build scans are the key CI/CD integration points for SAST, DAST, IAST, OSA,
and container scans, based on applicable security gates for this release.

• Release (pre-release, release, and deploy):	Continuous	Delivery	(CD)	extends	CI	to	incorporate	automated	
software releases within the SDLC pipeline. The builds, with continuously integrated code changes, are
automatically released for deployment after completing automated security testing. A release may require
further manual approval for business or technical reasons. Based on the release security assessment, this
stage can be subdivided into the following steps:
- Pre-Release: DAST/IAST	or	penetration	testing,	if	applicable,	must	be	performed	in	the	final	production	

build.	Based	on	the	pen	test	findings,	there	could	be	additional	builds	with	security	fixes.
- Security code scan for infrastructure as a code and policy as a code

- Release: This	is	the	final	build	that	will	be	packaged	to	deploy	in	the	production	environment	to	ship	to	
clients. The following security checks are performed for release:

- Code signing for the release build
- Verify security gates and complete security assessment flow
- Verify production security control checks required for the production deployment

- Deploy: Verify	production	security	configurations	and	any	change	in	access	controls	for	the	services	and	
new infrastructure components.

21

• Operate (operate and monitor):	 Continuous	Delivery	 (CD)	 extends	CI	 to	 incorporate	automated	software	
releases within the SDLC pipeline. The builds, with continuously integrated code changes, are automatically
released for deployment after completing automated security testing. A release may require further manual
approval for business or technical reasons. Based on the release security assessment, this

Code
Management

CI Build

Build & Unit
Test

Packaging
Model

Artifact
Management

Pu
ll

Re
qu

es
t

Re
vi

ewPipeline
Definition

Cu
t R

el
ea

se
 a

nd

Ta
g

CI Build

Performance
Testing

Regression
Testing

Integration
Testing

Infra / Cloud
Environment

Security
Acceptance

Release
Notes

SLO / SLI
Indicators

Error Budget
Intelligence

Monitoring and
Incident

Management

Release OperateDevelop Plan

Delivery
Traceability

Delivery
Frameworks

Delivery
Metrics

Code
Quality and
Security

Code
Coverage

Acceptance
Testing

Test Coverage

Image
Scans

Enterprise DevSecOps

IDE Security
Plugins

CI Build

SAST / OSA Scans

OSA
Automation

Artifact
Management

Pu
ll

Re
qu

es
t

Re
vi

ewPipeline & Code
merge Definition

Cu
t R

el
ea

se
 a

nd

Ta
g

Review
Security Gates

DAST Testing

IAST Testing

Penetration
Testing

Deployment to
Production

Security
Acceptance

Security
Approval

Security Config
Monitoring

Security Incident
Management

Security Policy &
Requirements

Threat
Modelling

Security
Training

SAST Findings
Review

Code
Coverage

DAST/IAST

Review Security
Findings

Review
OSA

findings

Vulnerability
Scanning & Parching

Risk / Threat Modeling App Security Development Practices Open Source / Third Party Scans Automated Security Testing Release Guardrails Maturity Analytics

Adoption Challenges Fragmented Security Practices Second Class Tenant Right Shift Touch Points Enterprise Level Adoption

One Click Onboarding Enterprise DevSecOps DevSecOps as a Service Security Policy Definition Rule Engine Maturity Framework

Adoption Enablers Seamless CI/CD Integration Smart Pipelines Consolidated Dashboards Maturity Scorecards

22

DevSecOps Maturi9. DevSecOps Maturity Model
DevSecOps maturity is a key indicator of the consistency of security testing and security policy enforcements,
as well as your reduction in production security incidents over time.

The following diagram shows the DevSecOps maturity mapped to NIST cybersecurity assessment model:

23

Some of the key attributes of a DevSecOps maturity model include:

DevSecOps Maturity Model

Key Attributes for DevSecOps Maturity

1 Did it meet all security gate/release requirements for the current release?

2 Security	exception/waver	for	the	current	release	

3 Number	of	security	issues	identified	in	the	current	release	(a	risk	score	generated	for	the	application	based	on	application	
security vulnerabilities detected)

4 Type of release: Major, minor, new application

5 Was it released on time or delayed?

6 Any	security	incidents	for	this	application	detected	in	production	in	past	six	months	or	one	year?	

7 Lines of code change introduced – total lines of code changed, to help identify if the change is considered major or minor

8 Past release maturity score

9 Is this application enrolled to production DAST, bug bounty, or RASP?

10 Does	this	application	have	any	known	security	issues	in	production	under	exceptions	for	application	security	(SAST,	DAST,	
IAST, pen test, production DAST, RASP)?

11 Did	it	verify	server	security	configuration	during	release/deployment?	

12 Did	it	verify	production	security	control	for	WAF,	SIEM,	IDS,	IPS,	firewall,	and	any	other	applicable	security	controls?		

13 Did it use security analytics to help identify any security threats by analyzing alerts and comparing with release security data?

14 Was the infrastructure as a code security review performed?

24

Benefits of DevSec 10. Benefits of DevSecOps
Integrating security with DevOps at a high level of maturity is a long and sometimes challenging process, but
one	well	worth	pursuing.	Your	organization	can	greatly	benefit	using	DevSecOps,	 and	you	will	 begin	 to	see	
results with early security testing integrations:

1. Consistent security testing for every release

2. Security is prioritized and is no longer relegated to the last stage of code deployment

3. Developers train on application security, and code security quality improves

4. DevSecOps is the key to shifting left, identifying application security issues as early in the process as

 possible, and reducing the high cost of security incidents

5. Reduce application security risks

6. Security is in sync with fast-paced development to meet business goals and time-to-market objectives

7. Team silos are removed with security testing automation, close collaboration, and communication

8. Identify any security compliance and audit issues early in the process

25

Gyan Prakash is a Head of Information Security at Altimetrik. Before joining

Altimetrik, Gyan was Global Head of Application Security & Security Engineering at

Visa from 2016-2020. He managed application security (SAST, DAST, pen testing, bug

bounty, open source vulnerability) and security product engineering. Gyan also led

development and deployment of Visa GRC Management Service, Cybersecurity Risk

Management Services, and a RASP solution.

Gyan	 has	 20+	 years	 of	 experience	 in	 security	 technologies.	 He	 has	 implemented	

mature DevSecOps at Visa and has been consulting with Fortune 500 organizations

working to implement DevSecOps at scale. Gyan is a technologist and innovator at

heart, with 250 global patents including 152 granted in the areas of system security,

mobile security, tokenization, and blockchain.

A
uth

or
B

io

